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Abstract. We introduce a model of the evolution of cooperation in
groups which incorporates both conditional direct-reciprocity (“tit-for-
tat”), and indirect-reciprocity based on public reputation (“conspicuous
altruism”). We use ALife methods to quantitatively assess the effect of
changing the group size and the frequency with which other group mem-
bers are encountered. We find that for moderately sized groups, although
conspicuous altruism plays an important role in enabling cooperation, it
fails to prevent an exponential increase in the level of the defectors as
the group size is increased, suggesting that economic factors may limit
group size for cooperative ecological tasks such as foraging.

1 The Model

Pairs of agents (ai, aj) : i 6= j are drawn at random from A = {a1, a2, . . . an},
and engage in bouts of grooming at different time periods t ∈ {0, 1, . . .N}. We
refer to n as the group size and N as the frequency-of-encounter.

At each time period t the groomer ai may choose to invest a certain amount
of effort u(i,j,t) ∈ [0, U ] ⊂ R in grooming their partner aj, where U ∈ R is a
parameter determining the maximum rate of grooming. This results in a negative
fitness payoff −u to the groomer, and a positive fitness payoff ku to the partner
aj :

φ(j,t+1) = φ(j,t) + k · u(i,j,t)

φ(i,t+1) = φ(i,t) − u(i,j,t)

where φ(i,t) ∈ R denotes the fitness of agent ai at time t, and k ∈ R is a constant
parameter.

In an ecological context, the positive fitness payoff ku might represent, for
example, the fitness gains from parasite elimination, whereas the fitness penalty
−u would represent the opportunity cost of foregoing other activities, such as
foraging, during the time u allocated for grooming.

Since we are interested in the evolution of cooperation, we analyse outcomes
in which agents choose values of u that maximise their own fitness φi. Provided



that k > 1, over many bouts of interaction it is possible for agents to enter into
reciprocal relationships that are mutually-beneficial, since the groomer’s initial
cost u may be reciprocated with ku yielding a net benefit ku − u = u(k − 1).
Provided that agents reciprocate, they can increase their net benefit by investing
larger values of u. However, by increasing their investment they put themselves
more at risk from exploitation, since just as in the alternating prisoner’s dilemma
[5], defection is the dominant strategy if the total number of bouts N is known:
the optimal behavior is to accept the benefits of being groomed without invest-
ing in grooming in return. In the case where N is unknown, and the number of
agents is n = 2, it is well known that conditional reciprocation is one of sev-
eral evolutionary-stable solutions in the form of the so-called tit-for-tat strategy
which copies the action that the opposing agent chose in the preceding bout at
t − 1 [4]. However, this result does not generalise to larger groups n > 2.

Nowak and Sigmund [7] demonstrate that reciprocity can emerge indirectly

in large groups, provided that information about each agent’s history of actions
is summarised and made publicly available in the form of a reputation or “image-
score” r(i,t) ∈ [rmin, rmax] ⊂ Z. The image-score ri summarises the propensity-
to-cooperate of agent ai. As in the Nowak and Sigmund model, image scores in
our model are initialised ∀i r(i,0) = 0 and are bound at rmin = −5 and rmax = 5.
An agent’s image score is incremented at t + 1 if the agent invests a non-zero
amount at time t, otherwise it is decremented:

r(i,t+1) =

{

min(r(i,t) + 1, rmax) : u(i,x,t) > 0
max(r(i,t) − 1, rmin) : u(i,x,t) = 0

and agents invest conditionally on their partner’s image score:

u(i,j,t) =

{

γ : r(j,t) ≥ σi

0 : r(j,t) < σi

where σi is a parameter determining the threshold image score above which agent
ai will cooperate, and γ ∈ R is a global parameter (as in [7] we use γ = 10−1

and k = 10).
Nowak and Sigmund [6] demonstrate that widespread defection is avoided if,

and only if, the initial proportion of agents using a discriminatory1 strategy is
above a critical value, implying that strategies based on indirect reciprocity via
reputation are an essential prerequisite for the evolution of cooperation in large
groups.

We are interested in the effect of group size n and interaction frequency N

on the evolution of cooperation. The analytical model of Nowak and Sigmund
[6] assumes: a) that the group size n is large enough relative to N that strategies
based on private history, such as tit-for-tat, are irrelevant (since the probability
of encountering previous partners is very small); and b) that the we do not need
to take into account the fact that an agent cannot cooperate with itself when
calculating the probability with which any given agent is likely to encounter a

1 discriminatory strategies cooperate only if their partner’s image score is non-
negative, that is: σi = 0.



particular strategy. However, in order to model changes in group size, and hence
interaction in smaller groups, it is necessary to drop both of these assumptions.
The resulting model is more complicated, and it is difficult to derive closed-form
solutions for the equilibrium behaviour. Therefore we use ALife simulation to
estimate payoffs, and numerical methods to compute asymptotic outcomes, as
described in the next section.

2 Methodology

In order to study the evolution of populations of agents using the above strate-
gies, we use both ALife methods and mathematical modeling based on evolution-
ary game-theory. However, rather than considering pairs of agents, our analysis
concerns interactions amongst groups of size n > 2 assembled from a larger popu-
lation of individuals. The resulting game-theoretic analysis is complicated by the
fact that this results in a many-player game, which presents issues of tractability
for the standard methods for computing the equilibria of normal-form games. A
popular ALife approach to this issue is to use Co-evolutionary algorithms [3, 4].
In a co-evolutionary optimisation, the fitness of individuals in the population is
evaluated relative to one another in joint interactions (similarly to payoffs in a
strategic game), and it is suggested that in certain circumstances the converged
population is an approximate Nash solution to the underlying game; that is, the
stable states, or equilibria, of the co-evolutionary process are related to the evo-
lutionary stable strategies (ESS) of the corresponding game. However, there are
many caveats to interpreting the equilibrium states of standard co-evolutionary
algorithms as approximations of game-theoretic equilibria, as discussed in detail
by Sevan Ficici [1, 2]. In order to address this issue, we adopt a methodology
called empirical game-theory [10, 12], which uses a combination of simulation
and rigorous game-theoretic analysis. The empirical game-theory method uses
a heuristic payoff matrix which is calibrated by running many simulations, as
detailed below.

We can make one important simplification by assuming that the game is
symmetric, and therefore that the payoff to a given strategy depends only on
the number of agents within the group adopting each strategy. Thus for a game
with j strategies, we represent entries in the payoff matrix as vectors of the form
p = (p1, . . . , pj) where pi specifies the number of agents who are playing the ith

strategy. Each entry p ∈ P is mapped onto an outcome vector q ∈ Q of the form
q = (q1, . . . , qj) where qi specifies the expected payoff to the ith strategy.

For each entry in the payoff matrix we estimate the expected payoff to each
strategy by running 105 ALife simulations and taking the mean2 fitness.

With estimates of the payoffs to each strategy in hand, we are in a position
to model the evolution of populations of agents using these strategies. In our
evolutionary model, we do not restrict reproduction to within-group mating;
rather, we consider a larger population which temporarily forms groups of size

2 We take the average fitness of every agent adopting the strategy for which we are
calculating the payoff, and then also average across simulations.



n in order to perform some ecological task. Thus we use the standard replicator
dynamics equation [11] to model how the frequency of each strategy in the larger
population changes over time in response to the within-group payoffs:

ṁi = [u(ei, m) − u(m, m)] mi (1)

where m is a mixed-strategy vector, u(m, m) is the mean payoff when all play-
ers play m, and u(ei, m) is the average payoff to pure strategy i when all play-
ers play m, and ṁi is the first derivative of mi with respect to time. Strate-
gies that gain above-average payoff become more likely to be played, and this
equation models a simple co-evolutionary process of adaptation. Since mixed
strategies represent population frequencies, the components of m sum to one.
The geometric corollary of this is that the vectors m lie in the unit-simplex

△j−1 = {x ∈ Rj :
∑j

i=1 xi = 1}. In the case of j = 3 strategies the unit-simplex
△2 is a two-dimensional triangle embedded in three-dimensional space which
passes through the coordinates corresponding to pure strategy mixes: (1, 0, 0),
(0, 1, 0), and (0, 0, 1). We shall use a two dimensional projection of this triangle
to visualise the population dynamics in the next section3.

In our experiments we solve this system numerically: we choose 103 randomly
sampled initial values which are chosen uniformly from the unit simplex [9], and
for each of these initial mixed-strategies we solve Equation 1 as an initial value
problem using MATLAB’s ode15s solver [8]. This results in 103 trajectories
which either terminate at stationary points, or enter cycles.

We consider j = 5 strategies:

1. C which cooperates unconditionally (σi = rmin);
2. D which defects unconditionally (σi = rmax + 1);
3. S which cooperates conditionally with agents who have a good reputation

(σi = 0) but cooperates unconditionally in the first round (when reputations
have not yet been established);

4. Sd which cooperates conditionally (σi = 0) but defects unconditionally in
the first round of play;

5. T 4T which cooperates conditionally with agents who have cooperated in
previous rounds, and cooperates unconditionally against unseen opponents.

3 Results

Initially we restrict attention to j = 3 strategies and 102 initial values, allowing
us to more easily visualise the population dynamics and to compare our results
with that of Nowak and Sigmund [6] (who assume a large group size n relative
to N).

When we exclude discriminators and consider only cooperator (C), defectors
(D) and tit-for-tat (T 4T ) we find that defection is the dominant strategy regard-
less of N , implying that conditional reciprocity cannot sustain group cooperation
in the absence of reputation.

3 See [11, pp. 3–7] for a more detailed exposition of the geometry of mixed-strategy
spaces.
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Fig. 1. Direction field for n = 10 agents and N = 13 pairwise interactions per gener-
ation (above) compared with N = 100 (below). C denotes unconditional altruists, D

unconditional defectors and S discriminators who cooperate in the first round. Each
line represents a trajectory whose termination is represented by an open circle. The
arrows show the direction of change.
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Fig. 2. Mean frequency of each strategy in equilibrium as the number of pairwise inter-
actions per generation N is increased relative to n. The error bars show the confidence
interval for p = 0.05. C denotes the proportion of unconditional altruists; D uncondi-
tional defectors; S discriminators who cooperate in the first round; Sd discriminators
who defect in the first round; T4T the tit-for-tat strategy

We obtain more subtle results when we introduce reputation-based strate-
gies. Figure 1 shows the phase diagram for the population frequencies when we
analyse the interaction between cooperators (C), defectors (D) and discrimina-
tors (S) when we have a small group of n = 10 agents. As in [6] we find that
a minimum initial frequency of discriminators (y axis) is necessary to prevent
widespread convergence to the defection strategy (in the bottom right of the
simplex). However, the results of our model differ in two important respects.

Firstly, when the critical threshold of discriminators is reached, our model
results in various stationary mixes of discriminators and cooperators with a total
absence of defection, and no limit cycles. This is in contrast to [6] where the
population cycles endlessly between all three strategies if the critical threshold
is exceeded.

Secondly, the behaviour of our model is sensitive to the number of pairwise
interactions per generation N : as N is increased from N = 13 to N = 100 we
see that the basin of attraction of the pure defection equilibrium is significantly
decreased, and correspondingly the critical threshold of initial discriminators
necessary to avoid widespread defection. Our intuitive interpretation of these
results is that defection is less likely4 as we increase the frequency of interaction
relative to the group size.

4 Assuming that all points in the simplex are equally likely as initial values.



As discussed in Section 1, if we increase N relative to n we need to consider
the effect of strategies that take into account private interaction history as well
as strategies that are based on public reputation. Figure 2 shows the mean
frequency in equilibrium of each strategy when we analyse all five strategies and
systematically vary N while holding n fixed. We plot the equilibrium population
frequency against N

n
, and obtain the same graph for both n = 10 and n = 20

agents. This suggests that the ratio N
n

determines the asymptotic behaviour.

4 Discussion

The frequency of both unconditional cooperation and discrimination increases
with N , and these strategies become more prevalent than discriminators for
N
n

> 2. As we would intuitively expect, for N
n

> 1 discriminators become more
prevalent as we increase group size or decrease frequency of interaction. However,
this is not sufficient to prevent free-riding. Most striking is that the likelihood of
defection decreases exponentially as we increase the number of interactions per
generation N . Correspondingly, as we increase the group size n we observe an
exponential increase in the level of defection.

If we consider the possibility of inter-group competition and hence group se-
lection, then since the expected frequency of defectors in equilibrium determines
the per-capita fitness of the agents in the overall population5, we can interpret
our results as showing how group fitness changes as a function of group size (n)
and frequency-of-encounter (N). That is, for any given N we can determine the
optimum group size n.

Our results indicate that the stylised cooperation task described by our model
introduces a very strong selection pressure for smaller group sizes. Of course, this
task is not the only ecological task which influences per-capita fitness for any
given species. For example, our model could be used in conjunction with optimal
foraging models to derive a comprehensive model of optimum group size for a
particular species in a particular niche. Our main contribution is to highlight
that economic factors play a significant role in determining optimal group size,
when other ecological tasks such as foraging favour group sizes that are relatively
small compared with the frequency-of-encounter.

5 Conclusion

Our model predicts that neither reputation nor conditional punishment are suf-
ficient to prevent free-riding as the group size increases. Although both types of
strategy play an important role, as the group size increases the level of conspic-
uous altruism based on reputation rises, but defection rises faster. Thus, when
other tasks already favour smaller groups, we predict that economic factors will
limit the maximum group size independently of the group size favoured by other
niche-specific tasks.

5 In the absence of defection all other strategies are able to gain the maximum available
surplus.
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